Substrate specificity of Rhbg: ammonium and methyl ammonium transport.

نویسندگان

  • Nazih L Nakhoul
  • Solange M Abdulnour-Nakhoul
  • Emile L Boulpaep
  • Edd Rabon
  • Eric Schmidt
  • L Lee Hamm
چکیده

Rhbg is a nonerythroid membrane glycoprotein belonging to the Rh antigen family. In the kidney, Rhbg is expressed at the basolateral membrane of intercalated cells of the distal nephron and is involved in NH4+ transport. We investigated the substrate specificity of Rhbg by comparing transport of NH3/NH4+ with that of methyl amine (hydrochloride) (MA/MA+), often used to replace NH3/NH4+, in oocytes expressing Rhbg. Methyl amine (HCl) in solution exists as neutral methyl amine (MA) in equilibrium with the protonated methyl ammonium (MA+). To assess transport, we used ion-selective microelectrodes and voltage-clamp experiments to measure NH3/NH4+- and MA/MA+-induced intracellular pH (pH(i)) changes and whole cell currents. Our data showed that in Rhbg oocytes, NH3/NH4+ caused an inward current and decrease in pH(i) consistent with electrogenic NH4+ transport. These changes were significantly larger than in H2O-injected oocytes. The NH3/NH4+-induced current was not inhibited in the presence of barium or in the absence of Na+. In Rhbg oocytes, MA/MA+ caused an inward current but an increase (rather than a decrease) in pH(i). MA/MA+ did not cause any changes in H2O-injected oocytes. The MA/MA+-induced current and pH(i) increase were saturated at higher concentrations of MA/MA+. Amiloride inhibited MA/MA+-induced current and the increase in pH(i) in oocytes expressing Rhbg but had no effect on control oocytes. These results indicate that MA/MA+ is transported by Rhbg but differently than NH3/NH4+. The protonated MA+ is likely a direct substrate whose transport resembles that of NH4+. Transport of electroneutral MA is also enhanced by expression of Rhbg.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human Rhesus B and Rhesus C glycoproteins: properties of facilitated ammonium transport in recombinant kidney cells.

The mammalian Rh (Rhesus) protein family belongs to the Amt/Mep (ammonia transporter/methylammonium permease)/Rh superfamily of ammonium transporters. Whereas RhCE, RhD and RhAG are erythroid specific, RhBG and RhCG are expressed in key organs associated with ammonium transport and metabolism. We have investigated the ammonium transport function of human RhBG and RhCG by comparing intracellular...

متن کامل

Mechanisms of ammonia and ammonium transport by rhesus-associated glycoproteins.

In this study we characterized ammonia and ammonium (NH3/NH4(+)) transport by the rhesus-associated (Rh) glycoproteins RhAG, Rhbg, and Rhcg expressed in Xenopus oocytes. We used ion-selective microelectrodes and two-electrode voltage clamp to measure changes in intracellular pH, surface pH, and whole cell currents induced by NH3/NH4(+) and methyl amine/ammonium (MA/MA(+)). These measurements al...

متن کامل

pH sensitivity of ammonium transport by Rhbg.

Rhbg is a membrane glycoprotein that is involved in NH(3)/NH(4)(+) transport. Several models have been proposed to describe Rhbg, including an electroneutral NH(4)(+)/H(+) exchanger, a uniporter, an NH(4)(+) channel, or even a gas channel. In this study, we characterized the pH sensitivity of Rhbg expressed in Xenopus oocytes. We used two-electrode voltage clamp and ion-selective microelectrode...

متن کامل

Localization of the ammonium transporter proteins RhBG and RhCG in mouse kidney.

Ammonia is both produced and transported by renal epithelial cells, and it regulates renal ion transport. Recent studies have identified a family of putative ammonium transporters; mRNA for two members of this family, Rh B-glycoprotein (RhBG) and Rh C-glycoprotein (RhCG), is expressed in the kidney. The purpose of this study was to determine the cellular location of RhBG and RhCG protein in the...

متن کامل

Ammonium homeostasis and human Rhesus glycoproteins.

The brain ammonium production is detoxified by astrocytes, the gut ammonium production is detoxified by hepatic cells, and the renal ammonium production plays a major role in renal acid excretion. As a result of ammonium handling in these organs, the ammonium and pH values are strictly regulated in plasma. Up until recently, it was accepted that mammalian cell transmembrane ammonium transport w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 299 3  شماره 

صفحات  -

تاریخ انتشار 2010